LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Adversarial unsupervised domain adaptation for 3D semantic segmentation with multi-modal learning

Photo from wikipedia

Abstract Semantic segmentation in 3D point-clouds plays an essential role in various applications, such as autonomous driving, robot control, and mapping. In general, a segmentation model trained on one source… Click to show full abstract

Abstract Semantic segmentation in 3D point-clouds plays an essential role in various applications, such as autonomous driving, robot control, and mapping. In general, a segmentation model trained on one source domain suffers a severe decline in performance when applied to a different target domain due to the cross-domain discrepancy. Various Unsupervised Domain Adaptation (UDA) approaches have been proposed to tackle this issue. However, most are only for uni-modal data and do not explore how to learn from the multi-modality data containing 2D images and 3D point clouds. We propose an Adversarial Unsupervised Domain Adaptation (AUDA) based 3D semantic segmentation framework for achieving this goal. The proposed AUDA can leverage the complementary information between 2D images and 3D point clouds by cross-modal learning and adversarial learning. On the other hand, there is a highly imbalanced data distribution in real scenarios. We further develop a simple and effective threshold-moving technique during the final inference stage to mitigate this issue. Finally, we conduct experiments on three unsupervised domain adaptation scenarios, ie., Country-to-Country (USA →Singapore), Day-to-Night, and Dataset-to-Dataset (A2D2 →SemanticKITTI). The experimental results demonstrate the effectiveness of proposed method that can significantly improve segmentation performance for rare classes. Code and trained models are available at https://github.com/weiliu-ai/auda.

Keywords: domain adaptation; unsupervised domain; semantic segmentation; segmentation; domain

Journal Title: Isprs Journal of Photogrammetry and Remote Sensing
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.