LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Experimental analysis of cold-formed steel-to-timber connections with inclined screws

Photo from wikipedia

Abstract An experimental investigation into the behaviour of connections between cold-formed steel and timber components, formed with inclined screws, is presented. A series of material tests was firstly carried out… Click to show full abstract

Abstract An experimental investigation into the behaviour of connections between cold-formed steel and timber components, formed with inclined screws, is presented. A series of material tests was firstly carried out to assess the behaviour and limitations of each component of the system under investigation. These were supplemented by three types of interaction test: timber embedment, screw head pull-through and screw thread withdrawal, all aimed at developing a better understanding of the behaviour of the different components of the connection. The slip modulus and peak load-carrying capacity of twelve connection configurations were determined through a series of push-out tests. The results obtained were compared to the typical benchmark arrangement in which the screws were driven in perpendicular to the steel-timber interface. Component variations included the type of timber – particle board and plywood, the thickness of the steel – 1.5 mm and 2.4 mm thick, the inclination of the screws – 0° and 45°, and the presence or not of wings on the screws. The results showed that non-winged screws inclined at 45° gave up to about a 30% increase in peak load-carrying capacity and about a 140% increase in slip modulus when compared to the reference specimen.

Keywords: timber; steel; formed steel; cold formed; inclined screws; steel timber

Journal Title: Structures
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.