LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electrical properties modulation in spray pyrolysed Cu2SnS3 thin films through variation of copper precursor concentration for photovoltaic application

Photo from wikipedia

Abstract Thin film of Cu2SnS3 (CTS), a truly inexpensive photovoltaic absorber is deposited by low cost and non-vacuum spray pyrolysis technique on glass substrates. As deposited CTS films are of… Click to show full abstract

Abstract Thin film of Cu2SnS3 (CTS), a truly inexpensive photovoltaic absorber is deposited by low cost and non-vacuum spray pyrolysis technique on glass substrates. As deposited CTS films are of p-type in nature, however they are characterised with undesirably high free carrier concentration which leads to a large amount of recombination. Such a high carrier concentration is successfully reduced from 1020  cm−3 to the order of 1018 cm−3 by varying the initial molar copper concentration in the precursor solution. A combined XRD and Raman spectroscopy analysis reveals that the coexistence of secondary Cu3SnS4 phase is responsible for the higher carrier concentration of the order of 1021 cm−3, due to its semi-metallic nature. The optical study of the film also shows the reduction in the band gap from 1.73 eV to 1.29 eV with the absorption coefficient of >104 cm-1. These features of the precursor optimised CTS film enable it as a promising photovoltaic absorber.

Keywords: carrier concentration; cu2sns3; copper; precursor; concentration; electrical properties

Journal Title: Journal of Analytical and Applied Pyrolysis
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.