LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Taking advantage of the excess of thermal naphthas to enhance the quality of FCC unit products

Photo by rabinam from unsplash

ABSTRACT Today, many European refineries finish up with excess of low-quality thermal naphthas that are hard to be marketed and, commonly, end being absorbed by catalytic naphthas at the expense… Click to show full abstract

ABSTRACT Today, many European refineries finish up with excess of low-quality thermal naphthas that are hard to be marketed and, commonly, end being absorbed by catalytic naphthas at the expense of their higher quality. In this context, we propose to investigate the suitability of co-feeding thermal naphthas, i.e. visbreaker naphtha and heavy coker, with vacuum gasoil (VGO) to the fluid catalytic cracking unit. A riser simulator reactor has been used in the experimentation and tested conditions have been: 500 and 550 °C; C/O mass ratio, 6 gcat goil−1; and, residence time, 3 − 12 s. Products have been lumped according to the fractionation made in refineries in: dry gas, liquefied petroleum gases, gasoline, light cycle oil and coke. The results reveal that the co-feeding of any of the naphthas hinders the over-cracking increasing the contents of gasoline and that it inhibits the condensation reactions that produce coke. Two main factors contribute to these results: (i) the competitive adsorption and reaction between the components of the naphthas and the VGO; and (ii) the shortening of the residence time caused by an increase of the flow when the naphtha is co-fed. It should be highlighted the variation in the composition of the gasoline produced with the blends, with overall reductions of the contents of olefins and aromatics.

Keywords: taking advantage; thermal naphthas; quality; advantage excess; unit; excess thermal

Journal Title: Journal of Analytical and Applied Pyrolysis
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.