BACKGROUND The role of testosterone (T) in the pathophysiology of affective disorders and anxiety is broadly supported. Evidence suggests that T has anxiolytic and antidepressant properties. One proposed route for… Click to show full abstract
BACKGROUND The role of testosterone (T) in the pathophysiology of affective disorders and anxiety is broadly supported. Evidence suggests that T has anxiolytic and antidepressant properties. One proposed route for the central effects of T is its interaction with the gamma-aminobutyric acid (GABA) system. We explored the relationship between T levels and GABA+ levels in anterior-cingulate (ACC) and the posterior-cingulate (PCC) regions in depressed women, using magnetic resonance spectroscopy (1H-MRS). METHODS Twenty-one depressed patients with regularly cycling who were not taking hormonal or psychotropic drugs were recruited. We assessed severity of depression using the Hamilton Depression Rating Scale (HDRS). Blood samples were taken for quantification of free (FT) and total testosterone (TT) on the day of the magnetic resonance (MR) scan. We evaluated GABA+ levels in the PCC and ACC, using the Hadamard Encoding and Reconstruction of MEGA-Edited Spectroscopy (HERMES) sequence. Pearson correlations were used to evaluate the association between FT, TT, GABA+ concentrations, and HDRS scores. RESULTS TT and FT levels were positively correlated with GABA+ levels in the PCC. No correlation was observed between T levels and GABA+ levels in the ACC. The HDRS total scores correlated negatively with FT levels. LIMITATIONS Limitations include the cross-sectional evaluation and the lack of a comparative healthy group. CONCLUSIONS Our findings suggest that the potential anxiolytic and antidepressant properties of T are related to increased GABA+ levels in the PCC. This observation may contribute to increased understanding of the role of T in depressive and anxiety symptoms in women.
               
Click one of the above tabs to view related content.