LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An in silico inter-subject variability study of extra-thoracic morphology effects on inhaled particle transport and deposition

Photo by vackground from unsplash

Abstract An understanding of human inter-subject variability is crucial for the implementation of personalized pulmonary drug delivery as well as exposure assessment of airborne hazardous materials. However, due to the… Click to show full abstract

Abstract An understanding of human inter-subject variability is crucial for the implementation of personalized pulmonary drug delivery as well as exposure assessment of airborne hazardous materials. However, due to the lack of statistically robust data and subsequent comparisons, the influence of human respiratory morphology on inhaled nano-/micro-particle transport and deposition is still not fully known. Thus, focusing on identifying geometric parameters that significantly influence airflow and inhaled particle transport/deposition, an experimentally validated Computational Fluid-Particle Dynamics (CFPD) model based on the Euler-Lagrange method is developed. In analyzing deposition patterns to fill the knowledge gap, the particles are grouped into six diameter groups, i.e., 0.05, 0.1, 0.5, 2, 5, and 10 µm. To enhance the statistical robustness of the investigation, a virtual population group is created that contains seven distinct and widely used human upper-airway configurations, where the same tracheobronchial trees are extended to Generation 6 (G6). Numerical results and the inter-subject variability analysis indicate that the glottis constriction is the morphological parameter that significantly impacts the inhaled particle dynamics in the respiratory tract. For reasons of statistical robustness, anatomical features of the upper airways should be maintained to capture the personalized airflow and particle transport dynamics for particles smaller than 500 nm or larger than 2 µm. However, a single upper airway model, representing a basic subpopulation group, can be employed to evaluate the total deposition of particles in the diameter range of 500 nm

Keywords: inter subject; deposition; particle; subject variability; particle transport

Journal Title: Journal of Aerosol Science
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.