LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Linear composition-dependent phase transition behavior and energy storage performance of tetragonal PLZST antiferroelectric ceramics

Photo by mbrunacr from unsplash

Abstract The composition dependent dielectric, ferroelectric and energy storage properties of tetragonal lead lanthanum zirconate stannate titanate (PLZST) antiferroelectric ceramics were systematically studied in this paper. Two sets of simple… Click to show full abstract

Abstract The composition dependent dielectric, ferroelectric and energy storage properties of tetragonal lead lanthanum zirconate stannate titanate (PLZST) antiferroelectric ceramics were systematically studied in this paper. Two sets of simple linear scaling relations were established for the forward switching field EAFE-FE, the backward switching field EFE-AFE and recoverable energy density Wre. As Zr content increases (Ti fixed), EAFE-FE, EFE-AFE, Wre decreases linearly, while the stored energy density Wst declines first and then increases. In addition, decreasing Ti content (Zr fixed) leads to linear increments in all of EAFE-FE, EFE-AFE, Wre and Wst. These results not only reveal the superiority of PLZST with lower Zr and lower Ti contents for energy storage capacitors, but also provide a fast way to design PLZST ceramics with specific energy storage properties. Our work may also be very helpful for better understanding the mechanism of phase transition behaviors of antiferroelectric materials.

Keywords: composition dependent; plzst antiferroelectric; energy storage; energy

Journal Title: Journal of Alloys and Compounds
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.