LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Structure and properties of ultrafine-grained CoCrFeMnNi high-entropy alloys produced by mechanical alloying and spark plasma sintering

Photo from wikipedia

Abstract CoCrFeMnNi high-entropy alloy (HEA) materials were fabricated using mechanical alloying (MA) and spark plasma sintering (SPS). The MA time, SPS temperature, and contaminations strongly affected the final microstructure and… Click to show full abstract

Abstract CoCrFeMnNi high-entropy alloy (HEA) materials were fabricated using mechanical alloying (MA) and spark plasma sintering (SPS). The MA time, SPS temperature, and contaminations strongly affected the final microstructure and mechanical properties. Nanocrystal face-centered cubic (FCC) solid solution was made during MA, and the FCC phase maintained as the matrix after SPS at 900 °C and 1100 °C. However, Cr carbides were transformed near the surface due to the carbon contamination. When MA time increased, phase stability of the FCC phase was improved, and the contaminant (ZrO2) from the MA balls was also increased. Ultrafine-grained microstructure was obtained at 60 min MA and 900 °C SPS. On the other hand, the higher SPS temperature and lower levels of contamination were required to achieve tensile ductility. Irregularly distributed ZrO2 particles developed bimodal microstructures.

Keywords: plasma sintering; mechanical alloying; spark plasma; alloying spark; high entropy; cocrfemnni high

Journal Title: Journal of Alloys and Compounds
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.