LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Structural and elastic properties of zinc-blende and wurtzite InN1-xBix alloys

Photo by introspectivedsgn from unsplash

Structural and elastic properties of InN1-xBix alloys in both zinc-blende and wurtzite phases are studied by using first-principle calculations. Two different Bi-atom arrangements of uniform and clustered configurations have been… Click to show full abstract

Structural and elastic properties of InN1-xBix alloys in both zinc-blende and wurtzite phases are studied by using first-principle calculations. Two different Bi-atom arrangements of uniform and clustered configurations have been considered for x = 0.25, 0.5, and 0.75. It is found that clustered configuration has a significant effect on lattice parameters of wurtzite InN1-xBix alloys. A slightly sublinear dependence on the alloy content, x, can be accepted for C11, C12, C13, and C33 in zinc-blende InN1-xBix, and for C12, C13, and C44 in wurtzite InN1-xBix, whereas clearly linear deviations are obtained for C44 and C66 in zinc-blende alloys and for C11 and C33 in wurtzite alloys. The effect of Bi atoms clustering leads to a decrease in all elastic constants and bulk modulus in zinc-blende InN1-xBix, and makes big deviations from Vegard's-like law and has little influence on bulk modulus in wurtzite InN1-xBix alloys.

Keywords: xbix alloys; zinc blende; wurtzite inn1; inn1 xbix; xbix

Journal Title: Journal of Alloys and Compounds
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.