LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Magnetically recoverable Ni@C composites: The synthesis by carbonization and adsorption for Fe3+

Photo from archive.org

Carbon-encapsulated nickel particles (Ni@C composites) for removing Fe3+ in wastewater have been prepared by the carbonization of phenolic resin mixing with nickel particles. XRD results reveal that the Ni@C composites… Click to show full abstract

Carbon-encapsulated nickel particles (Ni@C composites) for removing Fe3+ in wastewater have been prepared by the carbonization of phenolic resin mixing with nickel particles. XRD results reveal that the Ni@C composites are consisted of C, Ni, and Ni3S2. The TG-DTG curves of Ni@C composites are almost same as that of phenolic resin. The morphology investigation shows that Ni is distributed randomly on carbon. Based on analysis of N2 adsorption-desorption isotherm, the surface area and pore volume of Ni@C composites are 187.47 m2 g−1 and 0.06900 cm3 g−1 nm−1, respectively. The saturation magnetization values for Ni@C composites are 68.99 emu·g−1 determined by the Vibrating Sample Magnetometer. Ni@C composites exhibit a high adsorption capacity for Fe3+. The adsorption behavior follows the pseudo-second-order kinetic and Langmuir model between the adsorbents and Fe3+. Furthermore, the adsorption capacity of Ni@C composites derives from the attractive force between the adsorbed anion and the surface positive charge of Ni@C composites, as well as the bond between the adsorbed cation and the COO− groups. From the above results Ni@C composites can be widely applied in wastewater treatment as a new efficiency and excellent recoverable adsorbent.

Keywords: adsorption; carbonization; recoverable composites; composites synthesis; magnetically recoverable; synthesis carbonization

Journal Title: Journal of Alloys and Compounds
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.