LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis of carbon modified TiO2 nanotubes composite films by gas thermal penetration as symmetrical and binder-free electrochemical supercapacitor

Photo from wikipedia

Abstract In this work, we develop a novel carbon-modification method to improve the electronic conductivity and the electrochemical performances of TiO 2 nanotubes electrodes for binder-free supercapacitor. The carbon modified… Click to show full abstract

Abstract In this work, we develop a novel carbon-modification method to improve the electronic conductivity and the electrochemical performances of TiO 2 nanotubes electrodes for binder-free supercapacitor. The carbon modified TiO 2 nanotubes (denoted as C-TNTs) is prepared by two-step process of anodic oxidation and gas thermal penetration method on a Ti plate. The structure and composition of C-TNTs was characterized by SEM, XRD, EDS, RAMAN, XPS and XANS, respectively. The electrochemical performances of C-TNTs were evaluated by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and galvanostatic charging/discharging (GCD) tests. The C-TNTs film presents almost the same morphology as TNTs film and C is successfully deposited on the film in different forms. The largest areal capacitance of C-TNTs film is 38.2 mF/cm 2 at the scan rate of 10 mV/s in CV curves, and 12.10 mF/cm 2 at the current density of 0.125 mA/cm 2 in GCD measurements, 21.1 times than that of TNTs film. The great improvement of the capacitance can be attributed to the increase of conductivity and the pseudocapacitance effect, which corresponds to the C deposition and Ti 4+ reduction into Ti 3+ , and the chemisorbed CO and OH on the film surface, respectively. The galvanostatic charging/discharging cycle test indicates the good stability and reversibility of C-TNTs film as the electrode material in the application of supercapacitor.

Keywords: binder free; carbon modified; film; supercapacitor; tnts film

Journal Title: Journal of Alloys and Compounds
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.