LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis and transport properties of Cu-excess Cu(Zn,Cd)2InTe4 quaternary chalcogenides

Photo from archive.org

Abstract Polycrystalline quaternary chalcogenides with compositions Cu1.1Cd1.8In1.1Te4, Cu1.3Cd1.9In0.8Te4, Cu1.2Zn1.8InTe4 and Cu1.2Zn1.6In1.2Te4 were synthesized by reacting the constituent elements and subsequent solid state annealing followed by densification by hot-pressing in order… Click to show full abstract

Abstract Polycrystalline quaternary chalcogenides with compositions Cu1.1Cd1.8In1.1Te4, Cu1.3Cd1.9In0.8Te4, Cu1.2Zn1.8InTe4 and Cu1.2Zn1.6In1.2Te4 were synthesized by reacting the constituent elements and subsequent solid state annealing followed by densification by hot-pressing in order to investigate the transport properties with varying compositions, and therefore carrier densities. The thermal conductivity of these compositions, as well as stoichiometric CuZn2InTe4 and CuCd2InTe4, are reported for the first time. In addition to the thermal conductivity, resistivity, Seebeck coefficient and compositional stability measurements are also discussed. These materials are p-type semiconductors with very low thermal conductivity values. The potential for improved thermoelectric performance is also discussed.

Keywords: synthesis transport; transport properties; thermal conductivity; quaternary chalcogenides; properties excess

Journal Title: Journal of Alloys and Compounds
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.