LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Kesterite Cu2ZnSnS4 thin films by drop-on-demand inkjet printing from molecular ink

Photo from archive.org

Abstract Inkjet printing of kesterite Cu2ZnSnS4 (CZTS) thin films on glass from molecular ink is described. CZTS ink consists of copper acetate, zinc acetate, tin chloride and thiourea dissolved in… Click to show full abstract

Abstract Inkjet printing of kesterite Cu2ZnSnS4 (CZTS) thin films on glass from molecular ink is described. CZTS ink consists of copper acetate, zinc acetate, tin chloride and thiourea dissolved in a mixture of ethylene glycol and isopropyl alcohol. The printed precursor films are vacuum dried and thermolysed at 200 °C in air to obtain CZTS films. X-ray diffraction and Raman spectroscopy of films confirm the formation of kesterite CZTS without any secondary phases. The band gap of the films is 1.48 eV as deduced from transmission spectrum using Tauc plot. The films are p-type with hole density and mobility of 2.65 × 1019 cm−3 and 0.3 cm2V−1s−1, respectively. Measurement of electrical conductivity of films in the temperature range from 77 to 300 K show that dominant mechanisms of conduction are Mott-Variable Range Hopping, Nearest Neighbour Hopping and Thermally Activated Band Conduction in the temperature ranges of 77–155 K, 180–240 K and 250–300 K, respectively.

Keywords: kesterite cu2znsns4; thin films; molecular ink; ink; inkjet printing

Journal Title: Journal of Alloys and Compounds
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.