LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of water environmental factors on the photocatalytic degradation of sulfamethoxazole by AgI/UiO-66 composite under visible light irradiation

Photo by a2eorigins from unsplash

Abstract It is necessary to find visible light responsive photocatalysts for rapid and simple degradation of organic pollutants in water environment. In this work, a visible light responsive composite photocatalyst… Click to show full abstract

Abstract It is necessary to find visible light responsive photocatalysts for rapid and simple degradation of organic pollutants in water environment. In this work, a visible light responsive composite photocatalyst AgI/UiO-66 was prepared by an in situ growth method. Sulfamethoxazole (SMZ) antibiotic was selected as the target contaminant to probe the photocatalytic performance of the as-prepared AgI/UiO-66 composite under visible light irradiation. The results showed that the photocatalytic performance of the AgI/UiO-66 composite enhanced significantly compared to pure AgI. The effects of typical environment factors (i.e. pH, inorganic salt ions and common anions) on the degradation of SMZ were evaluated extensively. Results showed that the investigated pH (5.2, 7.0, 9.5) had no apparent effect on the photocatalytic degradation of SMZ except pH 2.5, at which the degradation rate of SMZ decreased significantly. In addition, inorganic salt ions and Cl−, HCO3− and SO42− anions in water exhibited no apparent effect on the degradation of SMZ. The effect of water matrix on the degradation of SMZ was also investigated. In the river water, the removal efficiency of SMZ was reduced compared with the cleaner water matrix. The capture experiments of radicals confirmed that superoxide radicals ( O2−) and hydroxyl radicals ( OH) were the main active species for the photocatalytic degradation of SMZ in the present work. Finally, the tentative degradation pathways of SMZ were proposed based on the intermediates analysis.

Keywords: agi uio; degradation; water; visible light; smz

Journal Title: Journal of Alloys and Compounds
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.