LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Improved high rate performance and cycle stability for LiNi0.8Co0.2O2 by doping of the high valence state ion Nb5+ into Li+ sites

Photo from wikipedia

Abstract High rate performance has been a challenging issue for LiNi0.8Co0.2O2 material. Elemental doping is a very effective method that has been used to maintain the structure of cathode materials… Click to show full abstract

Abstract High rate performance has been a challenging issue for LiNi0.8Co0.2O2 material. Elemental doping is a very effective method that has been used to maintain the structure of cathode materials with high stability and improve the high rate performance. Encouraged by previous research and considering the shortcomings of LiNi0.8Co0.2O2, materials with a composition of Li1-xNbxNi0.8Co0.2O2 (x = 0, 0.01, 0.03) were prepared by co-precipitation and the solid phase sintering method. The structure and electrochemical performance were studied in detail. The results from structural analysis suggested that the doping element was successfully doped into LiNi0.8Co0.2O2. Electrochemical measurements suggested that high rate capacities led to distinct improvements for a moderate Nb-doping content. Specifically, the initial capacities delivered by LiNi0.8Co0.2O2 and Li0.99Nb0.01Ni0.8Co0.2O2 increased from 97 to 156 mAh/g at 25 °C and 62.1 to 144.7 mAh/g at 50 °C at a rate of 5 C. In addition, the results from differential scanning calorimetry (DSC) and thermogravimetric (TG) analysis demonstrated that the Nb-doped LiNi0.8Co02O2 had a higher thermal stability in the charged state compared to the un-doped material. Therefore, the Li+ sites in LiNi0.8Co0.2O2 were partially substituted by the high valence element Nb, which can lower Li/Ni mixing and polarization, accelerate the migration rate of Li+ and stabilize the structure of the cathode material, thus improving the high rate performance and cycling stability.

Keywords: lini0 8co0; rate performance; high rate; rate; 8co0 2o2

Journal Title: Journal of Alloys and Compounds
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.