LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Narrowing band gap energy of defective black TiO2 fabricated by solution plasma process and its photocatalytic activity on glycerol transformation

Photo from wikipedia

Abstract Defective black titania (TiO2) was synthesized by the solution plasma technique at ambient temperature and pressure. The effects of the electrolyte solution medium type (KCl and HNO3) and concentration… Click to show full abstract

Abstract Defective black titania (TiO2) was synthesized by the solution plasma technique at ambient temperature and pressure. The effects of the electrolyte solution medium type (KCl and HNO3) and concentration (0.3 and 3.0 mM) as well as the plasma discharge time (1–4 h) with a Ti electrode were investigated. The 3.0 mM HNO3 solution provided the highest energy per second discharging into the plasma, resulting in both a high synthesis rate of black TiO2 and a high degree of defective structures, as monitored in terms of the Ti3+/Ti4+ ratio, which can shorten the band gap energy (Eg) of the obtained black TiO2. A long plasma discharge time (4 h) induced the formation of large particles of black TiO2, which appeared as a highly defective structure. Overall, the black TiO2 prepared by discharged plasma for 4 h in 3.0 mM HNO3 solution (BTN-304) provided the highest photocatalytic activity for glycerol conversion (58.49% at 24 h) and 4.85, 3.32, 2.11, 2.15, 39.15 and 26.61% yield of glyceraldehyde, dihydroxyacetone, hydroxypyruvic acid, glycolic acid, glycolaldehyde and formaldehyde, respectively. Pathway of glycerol conversion and product distribution over black TiO2 was attempted to propose. Finally, the reusability of the best black TiO2 was explored.

Keywords: tio2; plasma; energy; glycerol; solution; black tio2

Journal Title: Journal of Alloys and Compounds
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.