Abstract This article reports the influence of sintering temperature on the structural, dielectric and ferroelectric properties of lead-free Ba0.98La0.01Na0.01TiO3 ceramics synthesized by conventional solid-state reaction technique. The calcination of the… Click to show full abstract
Abstract This article reports the influence of sintering temperature on the structural, dielectric and ferroelectric properties of lead-free Ba0.98La0.01Na0.01TiO3 ceramics synthesized by conventional solid-state reaction technique. The calcination of the ceramic powders has been accomplished using microwave system at 1000 °C for 30 min and sintered at four different temperatures, i.e., 1250, 1300, 1350 and 1400 °C for 4 h. The XRD analysis along with Rietveld refinement confirms that all samples show a single phase tetragonal structure. The confirmation of tetragonal phase structure has been carried out using Raman study. The elemental composition and chemical states of the sintered pellets have been determined using XPS study. The investigation of Scanning Electron Microscopy (FE-SEM) revealed that the grain size increases with rising sintering temperature. The temperature and frequency dependence of dielectric properties has been investigated using Impedance spectroscopy in the frequency range of 60 Hz −1 MHz and temperature range of RT to 150 °C. The Ba0.98La0.01Na0.01TiO3 ceramic sintered at 1350 °C obtains the optimum dielectric constant of 2583 and dielectric loss
               
Click one of the above tabs to view related content.