LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Polyvinyl alcohol grafted poly (acrylic acid) as water-soluble binder with enhanced adhesion capability and electrochemical performances for Si anode

Photo by sharonmccutcheon from unsplash

Abstract Polyvinyl alcohol grafted poly (acrylic acid) (PVA-g-PAA) is synthesized through graft polymerization of acrylic acid (AA) onto PVA backbone via a free radical reaction. PVA-g-PAA is used as a… Click to show full abstract

Abstract Polyvinyl alcohol grafted poly (acrylic acid) (PVA-g-PAA) is synthesized through graft polymerization of acrylic acid (AA) onto PVA backbone via a free radical reaction. PVA-g-PAA is used as a water-soluble binder for silicon (Si) anodes in lithium-ion batteries (LIBs). The enhanced adhesion strength, excellent flexibility and high electrolyte uptake after grafting reaction render PVA-g-PAA a robust binder for Si anodes. Compared to linear PVA, PAA and CMC, optimal Si-PVA-g-10PAA electrode exhibits better cycle stability, higher Coulombic efficiency and more excellent rate capability, possessing a high electrical conductivity, low SEI/charge transfer resistance and fast lithium-ion diffusion coefficient. PVA-g-PAA binder not only maintains the electrode's mechanical and electrical integrity, facilitates a favorable electrochemical kinetics, but also assists in forming a stable SEI layer on Si surface upon long-term cycling. Such a strategy sheds light on the design of novel polymer binders for practical applications of high-capacity active materials with great volume change.

Keywords: binder; pva paa; acrylic acid; pva

Journal Title: Journal of Alloys and Compounds
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.