LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Heterojunctions of β-AgVO3/BiVO4 composites for enhanced visible-light-driven photocatalytic antibacterial activity

Photo from wikipedia

Abstract β-AgVO3/BiVO4 composite visible light driven (VLD) photocatalytic antibacterial materials with a heterojunction structure were synthesized through a simple one-pot hydrothermal approach. The synthesized samples were characterized by X-ray diffraction,… Click to show full abstract

Abstract β-AgVO3/BiVO4 composite visible light driven (VLD) photocatalytic antibacterial materials with a heterojunction structure were synthesized through a simple one-pot hydrothermal approach. The synthesized samples were characterized by X-ray diffraction, scanning electron microscopy, high resolution transmission electron microscopy, energy dispersive spectroscopy, X-ray photoelectron spectroscopy, photoluminescence spectra, and UV–visible diffuse reflectance spectra techniques, respectively. β-AgVO3/BiVO4 composite materials exhibit enhanced photocatalytic antibacterial activities against typical marine fouling bacteria (Pseudomonas aeruginosa) under visible light irradiation, which can be attributed to the involving of β-AgVO3 to form a heterojunction structure. The heterojunction greatly increases the separation extent and the lifetime of the photogenerated charges in the composite material. The 20% β-AgVO3/BiVO4 sample has the best VLD photocatalytic antibacterial performance. Under 30 min visible light irradiation, its antibacterial rate can reach 99.99%. The superoxide radical (⋅O2−) and holes (h+) are main active species in the VLD photocatalytic antibacterial process on the basis of the radical trapping experiment results. Furthermore, a high photocatalytic antibacterial activity can be kept after 5 cycles, suggesting high stability of β-AgVO3/BiVO4. Materials obtained in the present work can be potentially applied in practical antibacterial fields.

Keywords: microscopy; spectroscopy; photocatalytic antibacterial; visible light; agvo3 bivo4

Journal Title: Journal of Alloys and Compounds
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.