Abstract Abrasive is vital to sapphire substrates chemical mechanical polishing and provides the most critical support for flattening of sapphire. This work proposed a method to prepare ellipsoidal rod-shaped silica… Click to show full abstract
Abstract Abrasive is vital to sapphire substrates chemical mechanical polishing and provides the most critical support for flattening of sapphire. This work proposed a method to prepare ellipsoidal rod-shaped silica nanocomposite abrasives in order to increase the material removal rate and improve the surface roughness, which were applied to chemical mechanical polishing on sapphire substrates. Ellipsoidal rod-shaped silica nanocomposite abrasives were prepared by Chromium ion/PEG200 induced method. In this work, the synthesis process of ellipsoidal rod-shaped silica nanocomposite abrasives was discussed. As an inducing agent, Chromium compounds were bonded with two SiO2 particles via chemical bonds. And ellipsoidal rod-shaped silica nanocomposite abrasives were coated by PEG200 via hydrogen bonds. Results from X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectroscopy revealed the occurrence of solid-state chemical reactions. The contact angle tests indicated the polishing liquid containing ellipsoidal rod-shaped silica nanocomposite abrasives had a good wettability. Ellipsoidal rod-shaped silica nanocomposite abrasives showed an excellent chemical mechanical polishing performance with a higher material removal and a lower surface roughness due to an excellent combination of chemical effect and mechanical effect occurred between ellipsoidal rod-shaped silica nanocomposite abrasives and sapphire substrates. A material removal model was built to describe the polishing behavior of ellipsoidal rod-shaped silica nanocomposite abrasives.
               
Click one of the above tabs to view related content.