LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Research on the defect types transformation induced by growth temperature of vertical graphene nanosheets

Photo from wikipedia

Abstract The influence factors on the defect types in vertical graphene nanosheets (VGNs) are widely researched while few systematic research has been reported on the growth temperature, which should play… Click to show full abstract

Abstract The influence factors on the defect types in vertical graphene nanosheets (VGNs) are widely researched while few systematic research has been reported on the growth temperature, which should play an important role in the transformation of defects types. In this work, VGNs were grown via plasma enhanced chemical vapor deposition (PECVD) method in the atmosphere of CH4, H2 and Ar. Based on SEM, Raman, XPS, NEXAFS and UPS spectrum analysis, we found that the types of defects in VGNs have clearly transformed from vacancy-like to boundary-like, corresponding to the rising growth temperature. Moreover, NEXAFS suggests that features near 7.7 eV are attributed to boundary-like defects, as well as −6.7 eV in UPS, providing an intuitive and half-quantitative direction to characterize boundary-like defects in VGNs. Additionally, the sheet resistance (from 1386 to 175 Ohm/Sq) and the wetting angle (from 148° to 121°) decrease as the temperature rises. It shows that changing the growth temperature, as the easy and effective method, is crucial of modulating the properties of VGNs owning to the transition of defects types from vacancy-like to boundary-like.

Keywords: growth temperature; vertical graphene; defect types; graphene nanosheets; temperature

Journal Title: Journal of Alloys and Compounds
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.