LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Glass-coated Ni2MnGa microwires with narrow structural transition range and enhanced magnetocaloric effect at low fields

Photo from wikipedia

Abstract The structural, magnetic and magnetocaloric properties of glass-coated magnetic microwires, composed of Ni2MnGa and produced with the Taylor-Ulitovski technique, have been investigated with XRD, EBSD, SEM and magnetization measurements.… Click to show full abstract

Abstract The structural, magnetic and magnetocaloric properties of glass-coated magnetic microwires, composed of Ni2MnGa and produced with the Taylor-Ulitovski technique, have been investigated with XRD, EBSD, SEM and magnetization measurements. At room temperature, the microwires exhibit a monocrystalline phase with a Cu2MnAl-type crystal structure (space group Fm-3m; cell parameter a = 5.832 A). The microwires in this study show a magnetocaloric effect with a sharp martensitic transformation in the range of 185–195 K, as well as a magnetocaloric effect owing to the magnetic phase transition at the Curie temperature. Due to the different strength of anisotropy and easy magnetization axis, the magnetocaloric effect during the martensitic transformation exhibit a maximum at low fields (0.5 T), and high efficiency (defined as a ratio between refrigerant capacity and applied magnetic field) at 0.2 T.

Keywords: range; low fields; effect; glass coated; magnetocaloric effect; transition

Journal Title: Journal of Alloys and Compounds
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.