LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Revisiting NaTi2(PO4)3/nanocarbon composites prepared using nanocarbons with different dimensions for high-rate sodium-ion batteries: The surface properties of nanocarbons

Photo from wikipedia

Abstract In this study, we intend to revisit oxide/nanocarbon composites for a systematic study of oxide particle size, chemical bonding between oxide and carbon, electrical conductivity and ion transport in… Click to show full abstract

Abstract In this study, we intend to revisit oxide/nanocarbon composites for a systematic study of oxide particle size, chemical bonding between oxide and carbon, electrical conductivity and ion transport in the composites on the electrochemical properties of NaTi2(PO4)3@nanocarbon microsphere composites prepared using zero-dimensional carbon black, one-dimensional carbon nanotubes, and two-dimensional graphene as anode materials for high-rate sodium-ion batteries. In the solution-based synthesis of the composites, oxide precursor nanoparticles deposited on nanocarbons are converted into final oxide nanoparticles through heat treatment. We demonstrate that growth of the NaTi2(PO4)3 particles in the NaTi2(PO4)3@nanocarbon composites occurs during heat treatment when the concentration of oxygen functional groups per unit specific area of nanocarbons is high. Growth of oxide precursor nanoparticles is observed for carbon black with a high concentration of oxygen functional groups during heat treatment owing to the proximity between precursor particles. On the other hand, growth of precursor nanoparticles is effectively prevented for carbon nanotubes and graphene with a low concentration of oxygen functional groups. Rate capability increases in the order of NaTi2(PO4)3@carbon black

Keywords: po4 nanocarbon; nanocarbon composites; ion; nati2 po4; carbon; nanocarbon

Journal Title: Journal of Alloys and Compounds
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.