LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Microstructures and mechanical properties of nano carbides reinforced CoCrFeMnNi high entropy alloys

Photo from wikipedia

Abstract Different contents of carbon element (0-3 at.%) was added into CoCrFeMnNi high entropy alloys (HEAs) to prepare carbide-reinforced CoCrFeMnNi matrix composites. The effects of carbon on microstructures and mechanical properties… Click to show full abstract

Abstract Different contents of carbon element (0-3 at.%) was added into CoCrFeMnNi high entropy alloys (HEAs) to prepare carbide-reinforced CoCrFeMnNi matrix composites. The effects of carbon on microstructures and mechanical properties were systematically studied. The CoCrFeMnNi HEA sheet without carbon showed fine recrystallized grains with a grain size of approximately 5 μm and contained Cr-rich sigma phase. The CoCrFeMnNiCx HEA sheets with 1.0 at.% and 3.0 at.% C presented fine recrystallized grains and a small fraction of elongated grains. A large number of nano-scaled carbides were observed in the carbon-containing HEA sheets. With the carbon content increasing from 0 at.% to 3.0 at.%, the strengthening of the α-fiber texture is more obvious, and tensile yield strength increased from 371 MPa to 792 MPa, however, the elongation decreased from 54% to 11%, respectively. The CoCrFeMnNiC1 HEA sheet with a volume fraction of 2.9% nano carbides showed excellent balanced mechanical property, with tensile yield strength of 634 MPa and elongation of 38%. The increase of yield strength for the CoCrFeMnNiC1 HEA was mainly ascribed to the combined effects of precipitation Orowan strengthening and dislocations strengthening. Precipitation Orowan strengthening is the primary strength contributor, with a value of approximate 157 MPa.

Keywords: microstructures mechanical; mechanical properties; entropy alloys; high entropy; reinforced cocrfemnni; cocrfemnni high

Journal Title: Journal of Alloys and Compounds
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.