LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Combined effect of annealing temperature and vanadium substitution for mangetocaloric Mn1.2-V Fe0.75P0.5Si0.5 alloys

Photo by fabiooulucas from unsplash

Abstract Approaching the border of the first order transition and second order transition is significant to optimize the giant magnetocaloric materials performance. The influence of vanadium substitution in the Mn1.2-xVxFe0.75P0.5Si0.5… Click to show full abstract

Abstract Approaching the border of the first order transition and second order transition is significant to optimize the giant magnetocaloric materials performance. The influence of vanadium substitution in the Mn1.2-xVxFe0.75P0.5Si0.5 alloys is investigated for annealing temperatures of 1323, 1373 and 1423 K. By tuning both the annealing temperature and the V substitution simultaneously, the magnetocaloric effect can be enhanced without enlarging the thermal hysteresis near the border of the first to second order transition. Neutron diffraction measurements reveal the changes of site occupation and interatomic distances caused by varying the annealing temperature and V substitution. The properties of the alloy with x = 0.02 annealed at 1323 K is comparable to those found for the MnFe0.95P0.595Si0.33B0.075 alloy, illustrating that Mn1.2-xVxFe0.75P0.5Si0.5 alloys are excellent materials for magnetic heat-pumping near room temperature.

Keywords: vanadium substitution; 5si0 alloys; temperature; annealing temperature; 75p0 5si0; substitution

Journal Title: Journal of Alloys and Compounds
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.