LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The effect of oxygen partial pressure on band gap modulation of Ga2O3 grown by pulsed laser deposition

Photo from wikipedia

Abstract The influence of oxygen partial pressure and annealing on the properties of thin films of β-Ga2O3 grown by pulsed laser deposition were studied. The Ga2O3 samples were deposited at… Click to show full abstract

Abstract The influence of oxygen partial pressure and annealing on the properties of thin films of β-Ga2O3 grown by pulsed laser deposition were studied. The Ga2O3 samples were deposited at a substrate temperature of 250 °C at an oxygen pressure of 0–50 mTorr and then annealed at a temperature of 600 °C. We observed the crystallinity of Ga2O3 enhanced with annealing and with increasing oxygen pressure. The full width at half maximum of annealed β -Ga2O3 ( 4 ¯ 01 ) peaks decreased, corresponding to the grain size increasing from 6.76 nm to 11.25 nm. The conductivity of the obtained, as-grown Ga2O3 films increased with oxygen pressure from 2.1 to 7.9 mScm−1. As a result, the conductance and the energy band gap of β-Ga2O3 without annealing were controlled by the oxygen partial pressure. This was attributed to the oxygen vacancies, based on the composition ratio between O and Ga ions. These results clearly showed that the energy band gap and conductance of β-Ga2O3 thin films could be controlled in such a way that could be utilized for high-performance photo-electronic devices.

Keywords: oxygen partial; band gap; pressure; partial pressure

Journal Title: Journal of Alloys and Compounds
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.