LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Highly efficient removal of As(V) with modified electrolytic manganese residues (M-EMRs) as a novel adsorbent

Photo by lamposaritonang from unsplash

Abstract In this research, electrolytic manganese residues (EMRs) modified by NaOH, ultrasonic etching and microwave-assisted heating treatment (called M-EMRs hereafter) were used as a novel adsorbent to remove Arsenic (V)… Click to show full abstract

Abstract In this research, electrolytic manganese residues (EMRs) modified by NaOH, ultrasonic etching and microwave-assisted heating treatment (called M-EMRs hereafter) were used as a novel adsorbent to remove Arsenic (V) [As(V)] from synthetic wastewater. Results showed that M-EMRs were of nanosheet structure in sizes of about 100–300 nm; the percentage of Fe and Mn on the surface of M-EMRs increased, and Fe and Mn existed in the forms of FeS, FeOOH, Fe3O4, and MnO2. The As(V) concentration in the liquid decreased from 50 to 0.038 mg/L. The maximum adsorption capacity of E-EMRs for As(V) was 23.96 mg/g. The presence of low concentration of salt such as NaCl, Na2CO3, Na2HPO4, and Na2SO4 showed limited inhibition on the adsorption of As(V). Moreover, M-EMRs could be regenerated with 3% NaOH solution and reused for 5 times. Preliminary analysis indicates the application potential of M-EMRs in As-contaminated industrial wastewater.

Keywords: residues emrs; manganese residues; electrolytic manganese; novel adsorbent; efficient removal; highly efficient

Journal Title: Journal of Alloys and Compounds
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.