LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Structure and properties of composite Ni–Co–Mn coatings on metal interconnects by electrodeposition

Photo from wikipedia

Abstract In order to obtain the high conductivity values and wide spinel stability region for solid oxide fuel cell interconnect, several multilayer Ni, Co and Mn coatings are electroplated and… Click to show full abstract

Abstract In order to obtain the high conductivity values and wide spinel stability region for solid oxide fuel cell interconnect, several multilayer Ni, Co and Mn coatings are electroplated and then oxidized in air to form spinel oxide layers. Potentiodynamic polarization curves in different simple solutions are tested to analyze the deposition behavior of Co and Mn. Microstructures and compositions of Ni–Co–Mn multi-layers by adjusting the thickness and deposition parameters are analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that area specific resistance value of sample B–Ni/Co after oxidation at 750 °C for 500h is the lowest among the coatings, and the resistance values at 700 °C and 800 °C are 35.3 and 31.7 mΩ‧cm2, respectively. When the Ni transition layer in the vicinity of coating/substrate interface is thick, it will lead to the outward diffusion and aggregation of element Fe to form Fe-rich oxide intermediate layer, which will affect the high-temperature performance of the coating. Pure Co and CoMn alloy coatings with a certain thickness can effectively prevent the inward diffusion of oxygen and the outward diffusion of Fe and Cr at high temperature. The thin Ni transition layer combined with the thick Co layer or CoMn layer has the best element diffusion inhibition and high temperature electrical properties during the long-term high-temperature oxidation process.

Keywords: diffusion; layer; properties composite; high temperature; structure properties

Journal Title: Journal of Alloys and Compounds
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.