Abstract Thermal decomposition of (NH4)2[OsxPt1-xCl6] as single-source precursors for Os–Pt binary alloys has been investigated under ambient and high pressure up to 40 GPa. Thermal decomposition of mixed-metal (NH4)2[OsxPt1-xCl6] precursors in… Click to show full abstract
Abstract Thermal decomposition of (NH4)2[OsxPt1-xCl6] as single-source precursors for Os–Pt binary alloys has been investigated under ambient and high pressure up to 40 GPa. Thermal decomposition of mixed-metal (NH4)2[OsxPt1-xCl6] precursors in hydrogen atmosphere (reductive environment) under ambient pressure results in formation of β-trans-[Pt(NH3)2Cl2] and α-trans-[Pt(NH3)2Cl2] crystalline intermediates as well as single and two-phase Os–Pt binary alloys. For the first time, direct thermal decomposition of coordination compound under pressure has been investigated. A formation of pure metallic alloys from single-source precursors under pressure has been shown. Miscibility between fcc- and hcp-structured alloys has been probed up to 50 GPa by in situ high-pressure X-ray diffraction. Miscibility gap between fcc- and hcp-structured alloys does not change its positions with pressure up to at least 50 GPa.
               
Click one of the above tabs to view related content.