LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fabrication of efficient CsPbBr3 perovskite solar cells by single-source thermal evaporation

Photo from wikipedia

Abstract It is promising to improve the stability of organic–inorganic hybrid halide perovskite solar cells by using all-inorganic perovskite materials. Herein, a facile one-crucible single-source vacuum thermal evaporation (VTE) approach… Click to show full abstract

Abstract It is promising to improve the stability of organic–inorganic hybrid halide perovskite solar cells by using all-inorganic perovskite materials. Herein, a facile one-crucible single-source vacuum thermal evaporation (VTE) approach is developed, which is used to evaporate two different melting points materials CsBr (630 °C) and PbBr2 (370.6 °C) to deposit high-quality inorganic CsPbBr3 perovskite films. Molar ratio of PbBr2 to CsBr in their mixture in the crucible is a key factor influencing the stoichiometry, structure, photoelectrical and photovoltaic properties of the CsPbBr3 films. The other important factor is the thickness of the CsPbBr3 films. High-quality CsPbBr3 films with good uniformity and compact and large grains are prepared. Planar CsPbBr3 perovskite solar cells are fabricated giving a high power conversion efficiency of 8.65%. The fabricated CsPbBr3 solar cells exhibit a good stability in air without encapsulation. This study opens up the possibility to deposit multi-element compound thin films by facile single-source VTE of different melting points materials.

Keywords: single source; cspbbr3 perovskite; perovskite solar; cspbbr3; solar cells

Journal Title: Journal of Alloys and Compounds
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.