LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Gas-phase synthesis of iron oxide nanoparticles for improved magnetic hyperthermia performance

Photo from wikipedia

Abstract Magnetic nanoparticle-mediated hyperthermia has shown great potential in cancer therapy. However, upscaling of the synthesis of iron oxide nanoparticle with the required narrow size distribution remains challenging. This paper… Click to show full abstract

Abstract Magnetic nanoparticle-mediated hyperthermia has shown great potential in cancer therapy. However, upscaling of the synthesis of iron oxide nanoparticle with the required narrow size distribution remains challenging. This paper describes the reproducible and scalable synthesis of citric acid-functionalized iron oxide nanoparticles optimized for hyperthermia treatment. Iron oxide nanoparticles were synthesized by a spray flame method, which is eco-friendly and cost-effective. To the best of our knowledge, this is the first study reporting spray-flame synthesis of small iron oxide nanoparticles (approx. 7 nm) with narrow size distribution (polydispersity index ≪ 0.1). The citric acid-coated iron oxide nanoparticles revealed a hydrodynamic size of approx. 37 nm and a high magnetic saturation of 69 Am2/kg at room temperature. The magnetic hyperthermia study showed a significantly enhanced value of the intrinsic loss power (4.8 nHm2/kg), which is 1.5-fold higher than the best commercially available equivalents. The improved heating efficiency and small hydrodynamic size of citric acid-coated iron oxide nanoparticles demonstrate that the system could potentially be used as a nanoplatform for hyperthermia treatment.

Keywords: hyperthermia; iron oxide; oxide nanoparticles; synthesis iron; iron

Journal Title: Journal of Alloys and Compounds
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.