LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Improvement in oxidation behavior of Al0.2Co1.5CrFeNi1.5Ti0.3 high-entropy superalloys by minor Nb addition

Photo from wikipedia

Abstract High-entropy superalloys (HESAs) can replace commercial Ni-based superalloys. For high-temperature applications, the oxidation resistance of HESAs must be considered. Herein, the oxidation mechanism of HESA with sufficient minor Nb… Click to show full abstract

Abstract High-entropy superalloys (HESAs) can replace commercial Ni-based superalloys. For high-temperature applications, the oxidation resistance of HESAs must be considered. Herein, the oxidation mechanism of HESA with sufficient minor Nb addition was conducted at 900 °C under atmosphere. With 0.9 at% Nb added in the base metal, oxidation resistance was significantly improved, which was confirmed by a furnace test and thermogravimetry. The isothermal oxidation resistance was enhanced by approximately 66%, owing to the presence of the Nb-rich layer. This improvement was observed and analyzed by backscattering electron images through scanning electron microscopy and wavelength dispersive spectroscopy with a field-emission electron probe microanalyzer. The mechanism of oxide formation was elucidated by X-ray diffraction for various exposure time durations. With Nb minor addition, the microstructures of the present alloy were found to be composed of γ matrix and γ′ precipitates and the mechanical properties were slightly higher than those without Nb.

Keywords: high entropy; minor addition; oxidation; entropy superalloys

Journal Title: Journal of Alloys and Compounds
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.