LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A comprehensive variable temperature study of the layered oxide, Ca2Mn3O8

Photo from archive.org

Abstract Ca2Mn3O8 forms a delafossite-related layered structure, which crystallises with monoclinic C2/m symmetry. Compared with the delafossite-structure, the MnO6 layers in Ca2Mn3O8 exhibit an ordered cation void which forms a… Click to show full abstract

Abstract Ca2Mn3O8 forms a delafossite-related layered structure, which crystallises with monoclinic C2/m symmetry. Compared with the delafossite-structure, the MnO6 layers in Ca2Mn3O8 exhibit an ordered cation void which forms a magnetic ‘bow-tie’ like connectivity of Mn4+ ion layers separated by Ca2+ ions. In-situ variable temperature diffraction data demonstrates that the structure is robust up to a temperature of approximately 1173 K before the material decomposes into the perovskite, CaMnO3 and marokite, CaMn2O4 phases. Simultaneous thermal analysis suggests that a very small amount of water remains within the layers post synthesis. Impedance spectroscopy indicates that Ca2Mn3O8 is an electronic conductor in the range ∼400–700 K with an activation energy of 0.50 ± 0.01 eV.

Keywords: temperature; study layered; layered oxide; variable temperature; comprehensive variable; temperature study

Journal Title: Journal of Alloys and Compounds
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.