LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of heat treatment on microstructure and oxidation properties of Inconel 625 processed by LPBF

Photo from wikipedia

Abstract This paper presents a study of the microstructure evolution due to oxidation exposure of Inconel 625 (IN625) alloy produced by Laser Powder Bed Fusion (LPBF). IN625 is a nickel-based… Click to show full abstract

Abstract This paper presents a study of the microstructure evolution due to oxidation exposure of Inconel 625 (IN625) alloy produced by Laser Powder Bed Fusion (LPBF). IN625 is a nickel-based superalloy characterized by good mechanical properties, excellent oxidation, and corrosion resistance from cryogenic temperatures up to 980 °C, allowing its wide use in various harsh environments. In order to enable the application of LPBF IN625 components at high temperatures, the oxidation properties and microstructure of as-built and post-heat treated LPBF IN625 alloy must be carefully investigated. For this reason, an extensive characterization of the oxidation behavior of the alloy in the as-built condition and after solution treatment was performed. For both these conditions, the oxidation treatments were performed at 900 °C up to 96 h. The characterization was performed using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and scratch test analysis. The characteristics of the oxide layer and formed phases were investigated. The as-built IN625 state presented greater oxidation resistance compared to the solutionized IN625 one. The latter condition showed a defected oxide layer with the presence of Nb and Ni oxides inside the Cr oxide layer.

Keywords: oxidation properties; oxidation; treatment; lpbf; heat; inconel 625

Journal Title: Journal of Alloys and Compounds
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.