LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

CQDs decorated oxygen vacancy-rich CeO2/BiOCl heterojunctions for promoted visible light photoactivity towards chromium (Ⅵ) reduction and rhodamine B degradation

Abstract Engineering a heterojunction with high photoactivity and better exciton separation in photocatalyst is a promising target for environmental purification. In this context, we fabricated CQDs decorated double-shell CeO2 hollow… Click to show full abstract

Abstract Engineering a heterojunction with high photoactivity and better exciton separation in photocatalyst is a promising target for environmental purification. In this context, we fabricated CQDs decorated double-shell CeO2 hollow spheres(D-CeO2)/BiOCl heterojunction (D-CeO2: CQDs/BiOCl) composite by a simple method and scrutinized it photocatalytic performance toward chromium (Ⅵ) reduction and rhodamine B degradation. The resultant D-CeO2: CQDs/BiOCl composite is validated much more active under visible light irradiation with the high rhodamine B degradation rate of 0.12min−1 which is about 3 and 255 times, meanwhile, chromium (Ⅵ) reduction rate of 0.015 min−1 which is about 6 and 32 times higher than the neat BiOCl and D-CeO2, respectively. The interfacial domain of D-CeO2/BiOCl decorated with CQDs for efficient photoinduced charge carriers transfer and separation are the point to attractive photocatalytic performance which combines the double-shell hollow sphere morphology with highly efficient light harvesting, rich OVs for the charge carriers fast separation and accelerated charge transfer after the CQDs participating.

Keywords: chromium reduction; cqds; ceo2 biocl; ceo2; rhodamine degradation

Journal Title: Journal of Alloys and Compounds
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.