LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Evaluation and control of residual amorphous phases in carbon-doped MgB2 superconductors

Photo by maculan from unsplash

Abstract Evaluation and control of amorphous phases in materials are very important for optimizing their properties. Herein, we focus on polycrystalline MgB2 materials prepared with hydrocarbon doping and study the… Click to show full abstract

Abstract Evaluation and control of amorphous phases in materials are very important for optimizing their properties. Herein, we focus on polycrystalline MgB2 materials prepared with hydrocarbon doping and study the effects of residual amorphous impurities on the superconducting performance. Carbon is known to be an effective element for enhancing the transport critical current under an external magnetic field. The doped samples were prepared under two different nominal conditions, MgB2(C16H10)x/16 and MgB2−x(C16H10)x/16, which respectively correspond to additional and substitutional type doping of the MgB2 composition. Regardless of the doping type, both fabrication methods retarded the formation of the MgB2 phase due to the dopant, leading to an increase in amorphous impurities. However, the apparent phenomena that arise from the additional and substitutional types are still elusive. Ultimately, the structural differences due to the impurity effects caused significant changes in the transport critical current performance. The present quantitative analysis of the amorphous impurities thus paves the way to further optimize the doping methodology for MgB2 superconducting materials.

Keywords: mgb2; residual amorphous; amorphous phases; evaluation control; carbon

Journal Title: Journal of Alloys and Compounds
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.