LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Improving creep age formability of an Al-Cu-Li alloy by electropulsing

Photo from wikipedia

Abstract Electrically assisted creep age (ECA) forming of an Al-Cu-Li alloy, when applied electropulsing during the different stages, has been experimentally investigated under the applied stress of 160 MPa at 160 °C… Click to show full abstract

Abstract Electrically assisted creep age (ECA) forming of an Al-Cu-Li alloy, when applied electropulsing during the different stages, has been experimentally investigated under the applied stress of 160 MPa at 160 °C for 20 h. Creep strain of the sample assisted by electropulsing when introduced during the initial creep stage increased by ~27.2% comparing with that of conventional creep ageing test (CCA) at the end of 20 h. However, there is almost no effect on creep strain when applied electropulsing at the beginning of 4, 8 and 19 h. Tensile tests indicate that strength of the aged specimens assisted by electropulsing when applied during the different creep stages is almost the same, but a slight reduction in elongation for the ECA specimen when introduced electropulsing during the initial stage and an increase by ~27.4% in elongation of the ECA specimen when introduced electropulsing during the last stage, compared to that of the CCA specimen. The fractograph of aged samples assisted by electropulsing when applied during the various creep stages, was observed to an obvious difference. Transmission electron microscopy (TEM) observations show that applying electropulsing during the early creep stage can accelerate dislocation motion, which for the first time proven by the observed larger dislocation structure, and promote Li solutes diffusion to grain-boundary, which is responsible for an increased creep strain and a decreased elongation, respectively. And dissolution of the Cu-rich at grain-boundary and GPI zone/θ´ precipitates within the grain, induced by electropulsing when applied during the last creep stage, is considered as the cause of an increased elongation. Thus, applying electropulsing during both the initial and last creep age forming stages is a promising method to control the microstructure to attain a sound sheet metal forming/property synergy.

Keywords: elongation; creep age; age; stage; alloy

Journal Title: Journal of Alloys and Compounds
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.