Abstract This study focuses on the development of a highly defective, non-stoichiometric and amorphous TiOx as an efficient anti-viral surface coating. This amorphous phase is found to be significantly more… Click to show full abstract
Abstract This study focuses on the development of a highly defective, non-stoichiometric and amorphous TiOx as an efficient anti-viral surface coating. This amorphous phase is found to be significantly more effective against the baculovirus as compared to the conventionally used anatase modification. Moreover, the coating is found to be highly transparent in the entire visible-near infrared range. Radio frequency (RF) magnetron sputtering, one of the industrial scale techniques is used here to synthesize this film at room temperature. Furthermore, this film is found to be non-cytotoxic, durable, chemically stable and has strong adhesiveness with that of the substrate. Being cost-effective and environment friendly, this anti-viral surface coating holds huge promises of commercialization.
               
Click one of the above tabs to view related content.