LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electrodeposited ternary AgCuO2 nanocrystalline films as hole transport layers for inverted perovskite solar cells

Photo from wikipedia

Abstract P-type inorganic materials show great potential as the hole transport layers in perovskite solar cells due to their low cost and enhanced chemical stability. As a p-type semiconductor, although… Click to show full abstract

Abstract P-type inorganic materials show great potential as the hole transport layers in perovskite solar cells due to their low cost and enhanced chemical stability. As a p-type semiconductor, although AgCuO2 has a high hole mobility, it has not received much attentions so far. Herein, we introduce a one-step synthesis of AgCuO2 nanocrystalline films on conductive substrates by electrochemical deposition and use them as hole transport layers in perovskite solar cells. The electrodeposited AgCuO2 films exhibit smooth and pin-hole free morphology with high transmittance and good conductivity. Ultraviolet photoelectron spectroscopy also shows that the energy level of the AgCuO2 film matches well with the perovskite layer. Finally, the inverted perovskite solar cells based on AgCuO2 obtain a power conversion efficiency of 10.24%. This is the first study to demonstrate the successful use of AgCuO2 in perovskite solar cells. Moreover, it can be predicted that the ternary AgCuO2 will open up a new path for inorganic hole transport materials in the field of solar cells.

Keywords: perovskite solar; transport layers; hole transport; solar cells

Journal Title: Journal of Alloys and Compounds
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.