LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

InAl(Ga)N: MOCVD thermodynamics and strain distribution

Photo from wikipedia

Abstract One of the obstacles in obtaining high quality and high indium-molar fraction InAl(Ga)N is the higher vapor pressure of nitrogen over group-III elements, especially indium. In this work, we… Click to show full abstract

Abstract One of the obstacles in obtaining high quality and high indium-molar fraction InAl(Ga)N is the higher vapor pressure of nitrogen over group-III elements, especially indium. In this work, we used a thermodynamically motivated approach to increase the nitrogen content in vapor phase through the ammonia input partial pressure and its role on the composition of indium-rich InAl(Ga)N layers is investigated. It is shown that the increase in indium molar fraction coincides with the ammonia input partial pressure and independent of the two growth regimes: surface kinetics limited and mass transport limited. In parallel, molecular dynamics based on empirical potentials is carried out in order to investigate the strain behavior resulting from such growth kinetics. It is unveiled that at the InAl(Ga)N/GaN interface, tensile strain on Al–N and Ga–N bonds is enhanced and compressive strain in In–N bonds is relaxed. In contrast, on top of a layer, Al–N and Ga–N bonds are comparatively relaxed and In–N bonds are relatively more compressed. Clearly, this work provides a comprehensive overview of the metal-organic chemical vapor deposition (MOCVD) thermodynamics of InAl(Ga)N layers.

Keywords: inal mocvd; thermodynamics; mocvd thermodynamics; strain distribution; thermodynamics strain

Journal Title: Journal of Alloys and Compounds
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.