High-resolution marine seismic data acquisition and subsequent analyses are highly influenced by sea conditions, directly affecting data quality and interpretation. Traditional swell effect correction methods are effective in improving reflector… Click to show full abstract
High-resolution marine seismic data acquisition and subsequent analyses are highly influenced by sea conditions, directly affecting data quality and interpretation. Traditional swell effect correction methods are effective in improving reflector continuity; however, they are less useful for enhancing travel time consistency at intersection points of crossing lines. To develop a robust swell-removal technique for a set of crossing lines multi-beam echo sounder (MBES) data and Chirp sub-bottom profiler (SBP) data were acquired. After generation of a time structure map of the sea-bottom converted from the final processed multi-beam data, a moving average was used to improve the event continuity of the sea-bottom reflection of the Chirp SBP data. Using the position of the Chirp SBP data, the difference between the travel time of the sea-bottom from the smoothed map and the original travel time of the sea-bottom is calculated as a static correction. The static correction method based on the MBES data was compared and verified using three different cases: (i) simple 2D swell effect correction on a line-by-line basis, (ii) comparing the swell corrections at the crossing positions of 2D lines acquired from different dates, and (iii) comparison of ties of intersection points between 2D lines after new swell correction applied. Although a simple 2D swell correction showed great enhancement of reflector continuity, only the full static correction using the newly proposed method using MBES data produced completely corrected reflection events especially at the crossing points of 2D lines.
               
Click one of the above tabs to view related content.