LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Exploring a carbonate reef reservoir - nuclear magnetic resonance and computed microtomography confronted with narrow channel and fracture porosity

Abstract The complexity of hydrocarbon reservoirs, comprising numerous moulds, vugs, fractures and channel porosity, requires a specific set of methods to be used in order to obtain plausible petrophysical information.… Click to show full abstract

Abstract The complexity of hydrocarbon reservoirs, comprising numerous moulds, vugs, fractures and channel porosity, requires a specific set of methods to be used in order to obtain plausible petrophysical information. Both computed microtomography (μCT) and nuclear magnetic resonance (NMR) are nowadays commonly utilized in pore space investigation. The principal aim of this paper is to propose an alternative, quick and easily executable approach, enabling a thorough understanding of the complicated interiors of the carbonate hydrocarbon reservoir rocks. Highly porous and fractured Zechstein bioclastic packstones from the Bronsko Reef, located in West Poland were studied. Having examined 20 thin sections coming from two different well bores, 10 corresponding core samples were subjected to both μCT and NMR experiments. After a preliminary μCT-based image analysis, 9.4 [T] high-field zero echo time (ZTE) imaging, using a very short repetition time (RT) of 2 [μs] was conducted. Taking into consideration the risk of internal gradients' generation, the reliability of ZTE was verified by 0.6 [T] Single Point Imaging (SPI), during which such a phenomenon is much less probable. Both narrow channels and fractures of different apertures appeared to be common within the studied rocks. Their detailed description was therefore undertaken based on an additional tool – the spatially-resolved 0.05 [T] T2 profiling. According to the obtained results, ZTE seems to be especially suitable for studying porous and fractured carbonate rocks, as little disturbance to the signal appears. This can be confirmed by the SPI, indicating the negligible impact of the internal gradients on the registered ZTE images. Both NMR imaging and μCT allowed for locating the most porous intervals including well-developed mouldic porosity, as well as the contrasting impermeable structures, such as the stylolites and anhydrite veins. The 3D low-field profiling, in turn, showed the fracture aperture variations and contributed to the recognition of pore geometry. Analogously, the authors believe that such a spatially-resolved profiling could also be successfully implemented to study unconventional reservoirs. Finally, it has been concluded that although it is possible to investigate the connectivity of a given pore space solely using μCT, a detailed labeling process might turn out to be too time consuming and require a sound experience in that field. Therefore it is proposed to follow a preliminary μCT modeling by the direct and non-invasive set of NMR experiments.

Keywords: computed microtomography; porosity; magnetic resonance; nuclear magnetic

Journal Title: Journal of Applied Geophysics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.