LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Disturbances of the thermosphere-ionosphere-plasmasphere system and auroral electrojet at 30°E longitude during the St. Patrick's Day geomagnetic storm on 17–23 March 2015

Photo from wikipedia

Abstract This study presents an analysis of geomagnetic disturbances and ionospheric electron density distribution during the 2015 St. Patrick's Day geomagnetic storm. To study those we have used the satellite-borne and… Click to show full abstract

Abstract This study presents an analysis of geomagnetic disturbances and ionospheric electron density distribution during the 2015 St. Patrick's Day geomagnetic storm. To study those we have used the satellite-borne and ground-based observations. The St. Patrick's geomagnetic storm covers the interval of 15–23 March 2015, when solar eruptive phenomena (a long-enduring C9-class solar flare and associated CME's on 15 March) and a strong geomagnetic storm on 16–18 March (Dst dropped as strong as –228 nT) were reported. This geomagnetic storm is still the strongest one observed in the current solar cycle. The severe geomagnetic storm on 17-18 March 2015 led to complex effects on the ionosphere. We consider major features of the positive and negative ionospheric storms development at European mid- and high-latitudes. One of the interesting phenomena was observation of the positive ionospheric disturbances during the recovery phase. Using the Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP) we examined the main physical processes that played a major role in dramatic changes of the total electron content and the F2 layer peak electron density during this storm event.

Keywords: patrick day; storm; storm march; march 2015; geomagnetic storm

Journal Title: Journal of Atmospheric and Solar-Terrestrial Physics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.