BACKGROUND The primary approach for defining disease in observational healthcare databases is to construct phenotype algorithms (PAs), rule-based heuristics predicated on the presence, absence, and temporal logic of clinical observations.… Click to show full abstract
BACKGROUND The primary approach for defining disease in observational healthcare databases is to construct phenotype algorithms (PAs), rule-based heuristics predicated on the presence, absence, and temporal logic of clinical observations. However, a complete evaluation of PAs, i.e., determining sensitivity, specificity, and positive predictive value (PPV), is rarely performed. In this study, we propose a tool (PheValuator) to efficiently estimate a complete PA evaluation. METHODS We used 4 administrative claims datasets: OptumInsight's de-identified Clinformatics™ Datamart (Eden Prairie,MN); IBM MarketScan Multi-State Medicaid); IBM MarketScan Medicare Supplemental Beneficiaries; and IBM MarketScan Commercial Claims and Encounters from 2000-2017. Using PheValuator involves 1) creating a diagnostic predictive model for the phenotype, 2) applying the model to a large set of randomly selected subjects, and 3) comparing each subject's predicted probability for the phenotype to inclusion/exclusion in PAs. We used the predictions as a 'probabilistic gold standard' measure to classify positive/negative cases. We examined 4 phenotypes: myocardial infarction, cerebral infarction, chronic kidney disease, and atrial fibrillation. We examined several PAs for each phenotype including 1-time (1X) occurrence of the diagnosis code in the subject's record and 1-time occurrence of the diagnosis in an inpatient setting with the diagnosis code as the primary reason for admission (1X-IP-1stPos). RESULTS Across phenotypes, the 1X PA showed the highest sensitivity/lowest PPV among all PAs. 1X-IP-1stPos yielded the highest PPV/lowest sensitivity. Specificity was very high across algorithms. We found similar results between algorithms across datasets. CONCLUSION PheValuator appears to show promise as a tool to estimate PA performance characteristics.
               
Click one of the above tabs to view related content.