LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Patient Clustering Improves Efficiency of Federated Machine Learning to predict mortality and hospital stay time using distributed Electronic Medical Records

Electronic medical records (EMRs) support the development of machine learning algorithms for predicting disease incidence, patient response to treatment, and other healthcare events. But so far most algorithms have been… Click to show full abstract

Electronic medical records (EMRs) support the development of machine learning algorithms for predicting disease incidence, patient response to treatment, and other healthcare events. But so far most algorithms have been centralized, taking little account of the decentralized, non-identically independently distributed (non-IID), and privacy-sensitive characteristics of EMRs that can complicate data collection, sharing and learning. To address this challenge, we introduced a community-based federated machine learning (CBFL) algorithm and evaluated it on non-IID ICU EMRs. Our algorithm clustered the distributed data into clinically meaningful communities that captured similar diagnoses and geographical locations, and learnt one model for each community. Throughout the learning process, the data was kept local at hospitals, while locally-computed results were aggregated on a server. Evaluation results show that CBFL outperformed the baseline federated machine learning (FL) algorithm in terms of Area Under the Receiver Operating Characteristic Curve (ROC AUC), Area Under the Precision-Recall Curve (PR AUC), and communication cost between hospitals and the server. Furthermore, communities' performance difference could be explained by how dissimilar one community was to others.

Keywords: machine; federated machine; machine learning; patient clustering; medical records; electronic medical

Journal Title: Journal of biomedical informatics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.