LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Instantaneous centers of rotation for lumbar segmental extension in vivo.

Photo from wikipedia

The study aimed to map instantaneous centers of rotation (ICRs) of lumbar motion segments during a functional lifting task and examine differences across segments and variations caused by magnitude of… Click to show full abstract

The study aimed to map instantaneous centers of rotation (ICRs) of lumbar motion segments during a functional lifting task and examine differences across segments and variations caused by magnitude of weight lifted. Eleven healthy participants lifted loads of three different magnitudes (4.5, 9, and 13.5kg) from a trunk-flexed (~75°) to an upright position, while being imaged by a dynamic stereo X-ray (DSX) system. Tracked lumbar vertebral (L2-S1) motion data were processed into highly accurate 6DOF intervertebral (L2L3, L3L4, L4L5, L5S1) kinematics. ICRs were computed using the finite helical axis method. Effects of segment level and load magnitude on the anterior-posterior (AP) and superior-inferior (SI) ICR migration ranges were assessed with a mixed-effects model. Further, ICRs were averaged to a single center of rotation (COR) to assess segment-specific differences in COR AP- and SI-coordinates. The AP range was found to be significantly larger for L2L3 compared to L3L4 (p=0.02), L4L5 and L5S1 (p<0.001). Average ICR SI location was relatively higher - near the superior endplate of the inferior vertebra - for L4L5 and L5SI compared to L2L3 and L3L4 (p≤0.001) - located between the mid-transverse plane and superior endplate of the inferior vertebra - but differences were not significant amongst themselves (p>0.9). Load magnitude had a significant effect only on the SI component of ICR migration range (13.5kg>9kg and 4.5kg; p=0.049 and 0.017 respectively). The reported segment-specific ICR data exemplify improved input parameters for lumbar spine biomechanical models and design of disc replacements, and base-line references for potential diagnostic applications.

Keywords: segmental extension; rotation lumbar; centers rotation; lumbar segmental; instantaneous centers

Journal Title: Journal of biomechanics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.