LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Increasing step width reduces the requirements for subtalar joint moments and powers.

Photo from wikipedia

The subtalar joint (STJ) contributes to the absorption and generation of mechanical energy (and power) during walking to maintain frontal plane stability. Previous observational studies have suggested that there may… Click to show full abstract

The subtalar joint (STJ) contributes to the absorption and generation of mechanical energy (and power) during walking to maintain frontal plane stability. Previous observational studies have suggested that there may be a relationship between step width and STJ supination moment. This study directly tests the hypothesis that walking with a step width greater than preferred would reduce STJ moments, energy absorption, and power generation requirements, while increasing energy absorption at the hip during initial contact. Participants (n = 12, 7 females) were asked to walk on an instrumented treadmill at a constant velocity and cadence at a range of fixed step widths ranging from 0.1 to 0.4 times leg length (L). Walking at step widths greater than preferred (0.149 ± 0.04 L) reduced peak STJ moments at initial contact and propulsion which subsequently reduced the negative and positive work performed at the STJ. There was a 43% reduction in energy absorption (negative work) and approximately 30% decrease in positive work at the STJ as step width increased from 0.1 L to 0.4 L. An increase in energy absorption at the knee and hip was evident with an increase in step width during initial contact, although minimal mechanical changes were observed at the proximal joints during propulsion. These results suggest an increase in step width reduces the forces generated by muscles at the STJ across stance and is therefore likely to be beneficial in the prevention and treatment of their injuries. In terms of rehabilitation, the increase in mechanical costs occurring due to an increase in energy absorption by the hip and knee is of minimal concern.

Keywords: step; energy absorption; step width; subtalar joint

Journal Title: Journal of biomechanics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.