LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Predicted threshold against forward and backward loss of balance for perturbed walking.

Photo from wikipedia

The biomechanical mechanisms of loss of balance have been studied before for slip condition but have not been investigated for arbitrary perturbation profiles under non-slip conditions in sagittal plane. This… Click to show full abstract

The biomechanical mechanisms of loss of balance have been studied before for slip condition but have not been investigated for arbitrary perturbation profiles under non-slip conditions in sagittal plane. This study aimed to determine the thresholds of center of mass (COM) velocity and position relative to the base of support (BOS) that predict forward and backward loss of balance during walking with a range of BOS perturbations. Perturbations were modeled as sinusoidal BOS motions in the vertical or anterior-posterior direction or as sagittal rotation. The human body was modeled using a seven-link model. Forward dynamics alongside with dynamic optimization were used to find the thresholds of initial COM velocity for each initial COM position that would predict forward or backward loss of balance. The effects of perturbation frequency and amplitude on these thresholds were modeled based on the simulation data. Experimental data were collected from 15 able-bodied individuals and three individuals with disability during perturbed walking. The simulation results showed similarity with the stability region reported for slip and non-slip conditions. The feasible stability region shrank when the perturbation frequency and amplitude increased, especially for larger initial COM velocities. 89.5% (70.9%) and 82.4% (68.2%) of the measured COM position and velocity combinations during low (high) perturbations were located inside the simulated limits of the stability region, for able-bodied and disabled individuals, respectively. The simulation results demonstrated the effects of different perturbation levels on the stability region. The obtained stability region can be used for developing rehabilitative programs in interactive environments.

Keywords: loss balance; stability region; forward backward; backward loss; loss

Journal Title: Journal of biomechanics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.