LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Rapid increase in intradiscal pressure in porcine cervical spine units negatively impacts annulus fibrosus strength.

Photo from wikipedia

Vertebral endplate fracture is generally accepted to occur as a result of excessive, typically rapid, pressure developed within the intervertebral disc. Clinical evidence of disc disorders later in life following… Click to show full abstract

Vertebral endplate fracture is generally accepted to occur as a result of excessive, typically rapid, pressure developed within the intervertebral disc. Clinical evidence of disc disorders later in life following endplate fracture suggests that the disc is also impacted by the fracture event. There is an abundance of evidence to indicate that loss of disc pressure at the time of fracture alters annulus fibrosus loading which could impact disc health long-term. However, little is known regarding the isolated impact of the rapid disc pressurization during the fracture event. This study sought to determine if rapid disc pressurization impacts mechanical properties of the annulus. Intervertebral discs of porcine cervical functional spine units (FSU) were pressurized via rapid injection of hydraulic fluid (standard motor oil). FSUs were subsequently grouped according to whether the pressurization resulted in endplate fracture ('fracture'; n = 9) or not ('non-fracture'; n = 13). Annular tensile properties and lamellar adhesion strength were quantified for both fractured and non-fractured samples. A third group was also examined in which FSUs did not undergo the pressurization protocol ('control'; n = 10). Annular tensile properties were not found to be statistically different between the three conditions (p > 0.05). Lamellar adhesion strength, in contrast, was found to be, on average, 53% lower in specimens which were pressurized compared to control, non-pressurized samples (p = 0.03). Further, no statistical differences in adhesion strength was found between fractured and non-fractured pressurized samples (p = 0.990) indicating that rapid pressurization , and not the presence of an endplate fracture, impacted the mechanical properties of the annulus. Decreased lamellar adhesion strength increases the potential of delamination, which can lead to disc disorders.

Keywords: strength; fracture; annulus fibrosus; endplate fracture; pressurization; pressure

Journal Title: Journal of biomechanics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.