LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The effects of pathology and one-level versus two-level arthrodesis on cervical spine intervertebral helical axis of motion.

Photo from wikipedia

The etiology of adjacent segment disease after anterior cervical discectomy and fusion (ACDF) remains controversial. Range of motion (ROM) is typically used to infer the effects of arthrodesis on adjacent… Click to show full abstract

The etiology of adjacent segment disease after anterior cervical discectomy and fusion (ACDF) remains controversial. Range of motion (ROM) is typically used to infer the effects of arthrodesis on adjacent segment motion following ACDF, however, ROM only measures the total amount of motion. In contrast, the helical axis of motion (HAM) quantifies how the motion occurs and may provide additional insight into the etiology of adjacent segment pathology. Synchronized biplane radiographs of the cervical spine were acquired at 30 images per second while 62 ACDF patients and 38 control participants performed dynamic neck flexion/extension. A validated tracking process matched digitally reconstructed radiographs created from subject-specific bone models to the radiographs with sub-millimeter accuracy. The intervertebral HAM was then calculated and compared between pre and 1 year post surgery in patients, and between patients and controls at corresponding motion segments using linear mixed-effects analysis. Small differences in the anterior/posterior location of the HAM were found between the symptomatic motion segments before surgery and corresponding motion segments in controls. No changes in the HAM of motion segments adjacent to the arthrodesis were observed from pre to 1-year post-surgery. No differences in adjacent segment HAM were found between patients with one- versus two-level arthrodesis. Neither symptomatic pathology nor arthrodesis appear to change the way motion occurs in the cervical spine during flexion/extension one year after one or two-level arthrodesis. These results suggest ACDF does not alter short-term adjacent segment kinematics in a way that would contribute to the development of adjacent segment disease.

Keywords: motion; level; arthrodesis; pathology; etiology; adjacent segment

Journal Title: Journal of biomechanics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.